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Abstract

We consider the problem of estimating a nonlinear state-space model whose state

process is driven by an ordinary differential equation (ODE) or a stochastic differential

equation (SDE), with discrete-time data. We propose a new estimation method by

minimizing the conditional least squares (CLS) with the conditional mean function

computed approximately via unscented Kalman filter (UKF). We derive conditions
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under which the UKF-CLS estimator preserves the limiting properties of the exact

CLS estimator, namely, consistency and asymptotic normality. We demonstrate the

efficacy of the proposed method by simulation and a real application.

——————————————

Keywords: Nonlinear time series; State-space model; Unscented Kalman filter; SIR model.

1. INTRODUCTION

The Kalman filter was proposed by Kalman (1960) who demonstrated the usefulness of the

Kalman filter for drawing inference for a wide class of problems using the linear state-space

model. However, many scientific studies require nonlinear state-space models with which

the linear Kalman filter is inapplicable. For instance, the Susceptible-Infected-Recovered

(SIR) model, which is the nonlinear ordinary differential equation, has been widely used in

epidemiology, see Diekmann and Heesterbeek (2000).

Many statistical methods for estimating a nonlinear state-space model have been pro-

posed in the literature. Durbin and Koopman (2000) proposed an iterative scheme for

deriving an approximate linear-model whose likelihood approximately matches the mode of

the log-likelihood function of the underlying nonlinear model. Using the linear approximate

model, they proposed importance sampling schemes from classical and Bayesian perspec-

tives. However, as Durbin and Koopman (2001) pointed out, the estimated modes need

not be the same as the true modes due to linearization. Also their method suffers from the

need for calculating the Jacobian matrix, which may not be available. Other approaches, for

example, particle filter, bootstrap filter, and sequential Monte Carlo, have been proposed in

engineering and statistics, see Kitagawa (1996), Liu and Chen (1998), and Pitt and Shep-

hard (1999). See Doucet, deFreitas and Gordon (2001) for a comprehensive survey. Starting

with random samples called particles from an initial distribution, these methods update the

particles according to the conditional or the posterior distribution of the true states based

on importance sampling, which is often computationally expensive as Durbin and Koop-

man (2001). On the other hand, the extended Kalman filter (EKF) has become a standard
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technique in the engineering literature. The EKF approximates a nonlinear model by its

first order Taylor expansion, which is similar to the delta method. However, the EKF has

some serious defects. First, the approximation error becomes non-negligible with strongly

nonlinear models. Another drawback is that similar to the method of Durbin and Koopman

(2000), the EKF requires calculating the Jacobian, which may not be available or be very

complex.

Besides nonlinear least squares, several methods have been proposed for specifically es-

timating a nonlinear state-space model driven by an ordinary differential equation (ODE),

with observations being some function of the state vector corrupted by independent and

identically distributed (iid) errors. Ramsay, Hooker, Campbell and Cao (2007) proposed the

generalized profile estimation method. However, the method is computationally expensive

as it requires profiling out the generally high-dimensional coefficient in the functional expan-

sion. Liang and Wu (2008) proposed the two-step approach that consists of (i) estimating

the derivatives of the state process from data at the sampling epochs, via some nonpara-

metric smoothing methods, and then (ii) estimating the model parameters by minimizing

the sum of squared deviations between the left and right side of the defining ODE, with

the derivatives replaced by their nonparametric estimates from (i), but it is applicable only

when the full state vector is observed with measurement errors over discrete time.

Instead of relying on linearization techniques employed by the EKF, the unscented Kalman

filter (UKF) was proposed by Julier and Uhlmann (1997) for extending Kalman filter to

nonlinear models using a deterministic sampling scheme consisting of the so-called “sigma

points.” In each step, the UKF generates a set of sigma points and updates the prediction

formulas based on these sigma points. So the UKF bears resemblance to the particle filter.

However, the sigma points are deterministic samples and the number of the sigma points is

much less than the number of particles. Consequently, the UKF is computationally more

efficient than the particle filter. Also, empirical results suggest that the UKF appears to

be superior to EKF and works properly and satisfactorily from a Bayesian perspective, see

Julier and Uhlmann (2004) and Wu and Smyth (2007). Yet the use of UKF in estimating a
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nonlinear state-space model from a frequentist perspective is largely unexplored.

The method of conditional least squares (CLS) provides a general approach for estimating

a state-space model and it enjoys consistency and asymptotic normality, under some mild

regularity conditions, see Klimko and Nelson (1978). However, its applicability is limited by

the tractability of the conditional mean function of the future process given the data, which

is generally intractable for nonlinear state-space models. The UKF provides a numerical

scheme for computing the predictors with which we can calculate an approximation to the

conditional least squares (CLS) objective function. We propose to estimate a model by

minimizing the latter objective function; we shall refer to this method as the UKF-CLS

method. The main purpose of our paper is to study conditions under which the UKF-

CLS estimator preserves the consistency and the asymptotic distribution of the exact CLS

estimator.

In Section 2, we briefly review the limiting properties of the CLS method and show that

the approximate CLS method preserves the asymptotic properties of the CLS method if the

approximation scheme of the conditional mean function satisfies a certain convergence rate.

We detail the UT and UKF in Section 3. In order for the proposed UKF-CLS approach

to work, it is pivotal to study the convergence rate of the UKF in terms of estimating the

predictive mean, which we address in Sections 4 and 5. We are particularly interested in

estimating a state-space model whose state process is driven by some ordinary differential

equation (ODE) or stochastic differential equation (SDE), in which case, the model can be

discretized with arbitrarily fine time step. In Section 5, we study that convergence rate of

the UKF as the discretization time step converges to 0, and show that, under some regularity

conditions, the error rate of the UKF estimation scheme is of sufficiently high order that the

UKF-CLS estimator enjoys the same asymptotic distribution of the exact CLS estimator.

The efficacy of the proposed method is then illustrated by simulations in Section 7 and a

real application in Section 8. We briefly conclude in Section 9.
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2. APPROXIMATE CLS

Let the conditional expectation of yt given y1, . . . ,yt−1 be denoted by Eθ(yt|y1, . . . ,yt−1) =

Eθ(yt|t−1); the conditional mean is the best 1-step ahead predictor in the sense of minimizing

the mean squared prediction error. Then, the CLS method estimates the a × 1 unknown

true parameter value θ0 by the argument, denoted by θ̂, that minimizes the conditional sum

of squares

Qn(θ) =
n∑
t=1

(yt − Eθ(yt|t−1))2.

Klimko and Nelson (1978, Theorem 2.2) have established some general large-sample proper-

ties for the CLS estimator, which we now briefly describe. Let | · | be the Euclidean norm.

Assume that the conditional expectation Eθ(yt|t−1) is twice continuously differentiable in θ.

Taylor expansion implies that for δ > 0 and |θ − θ0| < δ, there exists θ∗ with |θ0 − θ∗| < δ

such that

Qn(θ) = Qn(θ0) + (θ − θ0)T
∂Qn(θ0)

∂θ
+

1

2
(θ − θ0)TVn(θ − θ0)

+
1

2
(θ − θ0)TUn(θ∗)(θ − θ0),

where

Vn =
(∂2Qn(θ0)

∂θi∂θj

)
, Un(θ∗) =

(∂2Qn(θ∗)

∂θ2 −Vn

)
.

Under the following four assumptions:

A1 1
2n
Vn → V a.e., a fixed positive definite matrix,

A2 limn→∞ supδ→0(
|Un(θ∗)ij |

nδ
) <∞, i ≤ a, j ≤ a,

A3 1
n
∂Qn(θ0)
∂θi

→ 0 a.e., i ≤ a,

A4 1
2
√
n
∂Qn(θ0)
∂θi

 N(0,W),

Klimko and Nelson (1978) derived the consistency and the large sample distribution of θ̂:

√
n(θ̂ − θ0) N(0,V−1WV−1).

Specifically, Klimko and Nelson (1978) showed the existence of a local minimizer of the

objective function in the interior of a shrinking neighborhood of the true parameter, with
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probability approaching 1 as sample size n → ∞, and the local minimizer constitutes the

CLS estimator which is then shown to be asymptotically normal.

The CLS method is, however, not always applicable for estimating a nonlinear state-space

model because the 1-step ahead predictor is generally intractable. This problem may be

overcome if the 1-step ahead predictor can be well approximated by some numerical scheme.

We show below that the approximate CLS estimator enjoys the same large-sample properties

of the (exact) CLS estimator, if the approximation error is of the order op(n
−1). Moreover, we

shall demonstrate in latter sections that the UKF provides such an approximation scheme.

Let Êθ(yt|t−1) be an approximation of Eθ(yt|t−1). Then, we have the following theorem:

Theorem 1. Assume

(i) there exist a real number r ≥ 1 and a neighborhood of the true parameter value, denoted

by W , such that Eθ(yt|t−1)−Êθ(yt|t−1) = op(n
−r) uniformly for all t and for all θ ∈ W ;

(ii) the conditional variance of yt given y1, . . . ,yt−1 under θ0, denoted by σ2
t|t−1, is uniformly

bounded for all t.

Then,

1

n

n∑
t=1

(yt − Êθ(yt|t−1))2 =
1

n

n∑
t=1

(yt − Eθ(yt|t−1))2 + op(n
−r),

and the approximate CLS estimator enjoys the same consistency and asymptotic normality

result of the exact CLS estimators of Klimko and Nelson (1978).

Proof. Consider the normalized approximate conditional sum of squared prediction error

function:

Q̂n(θ)

n
=

1

n

n∑
t=1

(yt − Êθ(yt|t−1))2.
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Consider the difference

1

n

n∑
t=1

(yt − Êθ(yt|t−1))2 − 1

n

n∑
t=1

(yt − Eθ(yt|t−1))2

=
1

n

n∑
t=1

{Eθ(yt|t−1)− Êθ(yt|t−1)}{2yt − Êθ(yt|t−1)− Eθ(yt|t−1)}

=
2

n

n∑
t=1

{Eθ(yt|t−1)− Êθ(yt|t−1)}{yt − Eθ(yt|t−1)}+
1

n

n∑
t=1

{Eθ(yt|t−1)− Êθ(yt|t−1)}2.

Below, the last two summands are written as A and B, respectively. It follows from (ii) that∑n
t=1{yt − Eθ0(yt|t−1)}2/n = Op(1). An application of Cauchy-Schwartz inequality then

implies that A = op(n
−r), uniformly for θ ∈ W , owing to (i). Similarly, B = op(n

−2r),

uniformly for θ ∈ W . Therefore, uniformly for θ ∈ W ,

1

n

n∑
t=1

(yt − Êθ(yt|t−1))2 =
1

n

n∑
t=1

(yt − Eθ(yt|t−1))2 + op(n
−r).

Since r ≥ 1, the approximate CLS estimator enjoys the same consistency and asymptotic

normality result of the exact CLS estimators thanks to Theorem 2.1, Corollary 2.1, and

Theorem 2.2 of Klimko and Nelson (1978) and Theorem 5.23 of van der Vaart (1998).

We will show that the case of r ≥ 1 can be achieved via the UKF, in Sections 5 and 6.

3. UNSCENTED KALMAN FILTER

3.1 Unscented Transformation

For a linear function f(x), the identity E[f(x)] = f(E(x)) holds. This property makes

it straightforward to calculate the conditional means and covariance matrices for a linear

Gaussian state-space model. However, if f(x) is nonlinear, the preceding identity is generally

invalid. The unscented transformation (UT) is an approximate scheme for computing the

mean and covariance matrix of y = f(x). Let x be a c× 1 random vector with mean E(x)

and covariance matrix Px. Let λ > −c be a constant. The UT approximates E{f(x)} via

a particular sample of x, of size 2c, that are referred to as sigma points and defined by the
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following equations:

x̂(0) = E(x),

x̂(i) = E(x) +
(√

(c+ λ)Px

)T
i
,

x̂(i+c) = E(x)−
(√

(c+ λ)Px

)T
i
,

where i = 1, . . . , c and
√

(c+ λ)Px is the matrix square root of (c+ λ)Px such that(√
(c+ λ)Px

)T(√
(c+ λ)Px

)
= (c+ λ)Px,

and
(√

(c+ λ)Px

)
i

is the ith row of
√

(c+ λ)Px. The constant λ is a tuning parameter

that controls the distance between the sigma points and E(x). The sigma points tend to be

closer to E(x), for −c < λ ≤ 0, but, otherwise, they tend to be further away from E(x). How

to choose an optimal λ is a difficult problem; see Ahn and Chan (2011). Here, for simplicity,

we set λ to 0 in all numerical work reported below. The approximate mean ŷ, covariance

matrix P̂y, and covariance matrix P̂xy between x and y from the UT are defined as follows:

ŷ =
2c∑
i=0

W (i)ŷ(i), P̂y =
2c∑
i=0

W (i)(ŷ(i) − ŷ)(ŷ(i) − ŷ)T ,

P̂xy =
2c∑
i=0

W (i)(x̂(i) − E(x))(ŷ(i) − ŷ)T ,

(1)

where ŷ(i) = f(x̂(i)), i = 0, . . . , 2c and

W (0) =
λ

c+ λ
, W (j) =

1

2(c+ λ)
, j = 1, . . . , 2c.

Hence, the UT is a weighted average scheme based on the sigma points, see Simon (2006).

On the other hand, the linear approximation scheme used by the EKF approximates the

mean and covariance matrices via the first order Taylor expansion, resulting in the following

formulas:

ŷL = f{E(x)}, P̂y,L = ZPxZ
T , P̂xy,L = PxZ

T , (2)

where Z is the Jacobian matrix of f evaluated at E(x).
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3.2 Unscented Kalman Filter

The UKF is an iterative scheme for computing the one-step ahead predictors (not necessarily

the conditional means) and the covariance matrices of the prediction errors for a nonlinear

state-space model. Consider the following state-space model:

ytk = utk(xtk) + εtk , εtk ∼ (0,Htk),

xtk+1
= vtk(xtk) + ηtk , ηtk ∼ (0,Qtk),

x0 ∼ (E(x0),Q0),

(3)

where utk ≡ 1 when ytk is missing and tk+1 − tk ≡ h, for some constant h > 0. Here, ytk

is a q × 1 vector of observations and xtk is the corresponding c × 1 state vector. The error

terms εtk and ηtk are assumed to be serially independent and independent of each other at

all time points. Note that we do not assume any specific distributions for the error terms

and the initial state vector. This model formulation can also be useful for modeling discrete-

time data sampled from a continuous-time model, e.g., a differential equation model or a

stochastic differential equation model. For continuous-time models, the above state-space

model may be obtained by a discrete-time approximation of the underlying continuous-time

process, in which case we may update the true states multiple times, say s times, between

two consecutive observations. Below, t0 and T denote the initial and final time points,

respectively.

The UKF algorithm attempts to compute the conditional mean of ytk given observations

up to and including time tk−1, denoted by ŷtk|tk−1
, and P̂y,tk|tk−1

, the corresponding covariance

matrix of the prediction error; like Kalman filter, the algorithm also needs to compute the

counterparts for xtk , e.g. the conditional mean x̂tk|tk−1
, etc.

We now describe the UKF updating scheme (Simon 2006):

1. The UKF is initialized as follows:

x̂0|0 = E(x0), P̂x,0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)T ].

2. Update the state vector.

9



(a) Let the estimators of the mean and the covariance matrix of xtk−1
given {yti , i <

k} be x̂tk−1|tk−1
and P̂x,tk−1|tk−1

, respectively. Let λ > −c be a constant. For

i = 1, . . . , c, define the sigma points:

x̂
(0)
tk−1|tk−1

= x̂tk−1|tk−1
,

x̂
(i)
tk−1|tk−1

= x̂tk−1|tk−1
+
(√

(c+ λ)P̂x,tk−1|tk−1

)T
i
,

x̂
(i+c)
tk−1|tk−1

= x̂tk−1|tk−1
−
(√

(c+ λ)P̂x,tk−1|tk−1

)T
i
.

(b) The UKF updates the conditional mean of xtk and the corresponding predictive

error covariance matrix approximately by

x̂tk|tk−1
=

2c∑
i=0

W (i)x̂
(i)
tk|tk−1

,

P̂x,tk|tk−1
=

2c∑
i=0

W (i)(x̂
(i)
tk|tk−1

− x̂tk|tk−1
)(x̂

(i)
tk|tk−1

− x̂tk|tk−1
)T + Qtk−1

,

where x̂
(i)
tk|tk−1

= vtk−1
(x̂

(i)
tk−1|tk−1

) for i = 0, 1, . . . , 2c.

3. Implement the measurement update equations.

(a) Based on the estimators of the conditional mean and the covariance matrix, for

i = 1, . . . , c we choose the new sigma points as follows:

x̂
(0)+
tk|tk−1

= x̂tk|tk−1
,

x̂
(i)+
tk|tk−1

= x̂tk|tk−1
+
(√

(c+ λ)P̂x,tk|tk−1

)T
i
,

x̂
(i+c)+
tk|tk−1

= x̂tk|tk−1
−
(√

(c+ λ)P̂x,tk|tk−1

)T
i
.

(b) The UKF then updates E(ytk|tk−1
), Cov(ytk|tk−1

), and Cov(ytk|tk−1
,ytk|tk−1

) ap-

proximately by

ŷtk|tk−1
=

2c∑
i=0

W (i)ŷ
(i)
tk|tk−1

,

P̂y,tk|tk−1
=

2c∑
i=0

W (i)(ŷ
(i)
tk|tk−1

− ŷtk|tk−1
)(ŷ

(i)
tk|tk−1

− ŷtk|tk−1
)T + Htk ,

P̂xy,tk|tk−1
=

2c∑
i=0

W (i)(x̂
(i)
tk|tk−1

− x̂tk|tk−1
)(ŷ

(i)
tk|tk−1

− ŷtk|tk−1
)T ,
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where ŷ
(i)
tk|tk−1

= utk(x̂
(i)+
tk|tk−1

) for i = 0, . . . , 2c.

(c) E(xtk|tk) and Cov(xtk|tk) are estimated by

Ktk|tk−1
= P̂xy,tk|tk−1

P̂−1
y,tk|tk−1

,

x̂tk|tk = x̂tk|tk−1
+ Ktk|tk−1

(ytk − ŷtk|tk−1
),

P̂x,tk|tk = P̂x,tk|tk−1
−Ktk|tk−1

P̂y,tk|tk−1
KT
tk|tk−1

.

4. Repeat step 2 and 3 for tk = t0, . . . , T .

The UKF has several attractive properties. First, it is computationally more efficient than

simulation based methods. Also the UKF does not require calculating the Jacobian matrix

and it provides more accurate approximation than the EKF, see Section 4 and 5.

4. CONVERGENCE RATE OF THE UT

Before studying the asymptotics of the UKF, we review some convergence properties of the

UT recently obtained by Ahn and Chan (2011). Let Ω, a subset some Euclidean space, be

the sample space of x, and define Dk as follows:

Dk =
{
f : Ω ⊂ Rc → Rq|f is a polynomial of degree at most k

}
.

Then, Ahn and Chan (2011) proved the following two theorems on the UT estimators of the

first two moments of y = f(x):

Theorem 2. 1. If f ∈ D2, then ŷ = E(y). In addition, if the distribution of x is

symmetric about its mean and f ∈ D3, then, ŷ=E(y).

2. If f ∈ D1, i.e., f is linear, then P̂y = Py and P̂xy = Pxy.

Theorem 3. Suppose P = hP∗ and x has a symmetric distribution about its mean. Assume

1. there exists a h-free constant M > 0 such that E|x̂k1
1 · · · x̂kcc | ≤ hi/2M i/2, for any non-

negative integers kj where
∑c

j=1 kj = i;
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2. for all j, 1 ≤ j ≤ q, and for all 0 < h ≤ 1, there exists some h-free constant K > 0,∣∣∣ ∂ifj(E(x))

∂xk1
1 · · · ∂xkcc

∣∣∣ ≤ Ki,

for any non-negative integers kj, 1 ≤ j ≤ c, where i =
∑c

j=1 kj.

Then,

E(y)− ŷ = O(h2), Py − P̂y = O(h2), Pxy − P̂xy = O(h2),

E(y)− ŷL = O(h), Py − P̂y,L = O(h2), Pxy − P̂xy,L = O(h2).

Note that Condition 1 of Theorem 3 is motivated by the fact that x̂k1
1 · · · x̂kcc = Op(h

i/2)

because x̃j = Op(
√
h), under the condition P = hP∗. Condition 2 of Theorem 3 is satisfied

if the function f is a polynomial.

5. CONVERGENCE RATE OF THE UKF

In this section, we study the asymptotic properties of the UKF. Throughout this section,

we assume the following state-space model that is identical to (3), except that now the

coefficient matrices of the model depends on an unknown parameter θ belonging to some

parameter space Θ:

ytk = utk(xtk) + εtk , εtk ∼ (0,Htk),

xtk+1
= vtk(xtk) + ηtk , ηtk ∼ (0,Qtk),

x0 ∼ (E(x0),Q0).

(4)

The unknown parameter can be can be estimated by minimizing the sum of squared pre-

diction error
∑T

tk=t0
|ytk − ŷtk|tk−1

(θ)|2 where ŷtk|tk−1
(θ) is approximately computed by the

UKF. Recall the 1-step ahead predictive distributions can be sequentially updated as follows

(with distribution of the right side of a → sign updated from the distribution of its left side

and additional data indicated by the subscripts):

x0 ≡ xt0|t0 → xt1|t0 → yt1|t0 ; (xt1|t0 ,yt1|t0)→ xt1|t1 → xt2|t1 → · · · →

xtk|tk → xtk+1|tk → ytk+1|tk ; (xtk+1|tk ,ytk+1|tk)→ xtk+1|tk+1
→ xtk+2|tk+1

→ · · · ,
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where the notation (x,y) denotes the joint distribution of x and y, and xtk+1|tk+1
denotes

the distribution identical to that of the conditional distribution of xtk+1
given the observa-

tions yti , i ≤ k + 1; by an abuse of notation, the same symbol may also denote a random

variable having the aforementioned conditional distribution. If utk and vtk are nearly linear

functions, and the error terms are normally distributed, then the above conditional random

variables may be well approximated by the normal random variables with means and co-

variance matrices computed by the UKF elaborated in the previous section. Specifically, let

x̆tk|tk−1
, x̆tk|tk , y̆tk|tk−1

denote the approximating normal random variables with their means

and covariance matrices computed from the UKF. First, we introduce some notations for

keeping track of the propagation of the approximation error along the updating steps. Given

x̆ti|ti , define xx̆ti|ti
(tk|tk) with k ≥ i as a random variable obtained as follows:

1. Starting with x̆ti|ti , we obtain the conditional distribution of x at time ti+1 given

Yti = {ytj , j ≤ i} to be denoted by xx̆ti|ti
(ti+1|ti) as follows:

xx̆ti|ti
(ti+1|ti)

d
= vti(x̆ti|ti) + ηti ,

where ‘
d
=’ means ‘equals in distribution.’

2. With xx̆ti|ti
(ti+1|ti), we obtain the conditional distribution of y at time ti+1 given Yti ,

to be denoted by yxx̆ti|ti
(ti+1|ti)(ti+1|ti) as follows:

yxx̆ti|ti
(ti+1|ti)(ti+1|ti)

d
= uti+1

(xx̆ti|ti
(ti+1|ti)) + εti+1

.

3. With the joint distribution for xx̆ti|ti
(ti+1|ti) and yxx̆ti|ti

(ti+1|ti)(ti+1|ti), we obtain the

conditional distribution of x at time ti+1 given Yti+1
.

4. i← i+ 1. Repeat 1-3 until i = k.

Thus, all conditional random variables from xx̆ti|ti
(ti+1|ti) to xx̆ti|ti

(tk|tk) are assumed to be

obtained exactly from the model were the conditional distribution of xti given Yti iden-

tical to the distribution of x̆ti|ti . In contrary, their true counterparts are denoted by, e.g.
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xxti|ti
(tk|tk) ≡ x(tk|tk) computed when the conditional distribution of xti given Yti is the true

distribution from the model. Also we can define x̆x̆ti|ti
(tk|tk) as follows: starting with x̆ti|ti ,

all conditional distributions from x̆x̆ti|ti
(ti+1|ti) to x̆x̆ti|ti

(tk|tk) are assumed to be conditional

normal random variables with the approximate mean and covariance matrix obtained from

the UKF. Thus, x̆x̆ti|ti
(tk|tk) = x̆tk|tk . Similar notations can be defined for the y process.

Below, we study the convergence properties of the UKF. First, we show that the UKF

reduces to the Kalman filter for linear models.

Theorem 4. If the functions utk(x) and vtk(x) in (3) are linear for t0 ≤ tk ≤ T , εtk ∼

N(0,Htk), and ηtk ∼ N(0,Qtk), then we have

1. x̂tk|tk−1
= E(xtk|tk−1

), x̂tk|tk = E(x̂tk|tk), ŷtk|tk−1
= E(ytk|tk−1

);

2. P̂x,tk|tk−1
= Px,tk|tk−1

, P̂x,tk|tk = Px,tk|tk , P̂y,tk|tk−1
= Py,tk|tk−1

, P̂xy,tk|tk = Pxy,tk|tk .

Proof. It follows from Theorem 2 in Section 4.

The following lemma of Milstein and Tretyakov (2004) is a key technical tool for studying

the asymptotics of the UKF.

Lemma 1. Suppose that, for a fixed integer N and k = 0, . . . , N , a sequence {uk} of non-

negative numbers satisfies the inequality

uk+1 ≤ (1 + Ah)uk +Bhp,

where h = T/N, A ≥ 0, B ≥ 0, p ≥ 1 are fixed constants. Then, for all k = 0, . . . , N ,

uk ≤ eATu0 +
B

A
(eAT − 1)hp−1,

where for A = 0, (eAT − 1)/A is defined as zero.

Below, we state two general theorems quantifying the order of the UKF approximation

error. For the UKF to be useful, the order of the approximation error should hold uniformly

for all parameters over the parameter space, or at least over some compact neighborhood of

the true parameter value.
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Theorem 5. Assume

1. |E{xx̆tk|tk
(tk+1|tk+1)− x̆x̆tk|tk

(tk+1|tk+1)}| ≤ K(1 + |E{x̆tk|tk}|)hp,

2. |E{xx̆tk|tk
(tk+1|tk+1)− x̆tk|tk}| ≤ K(1 + |E{x̆tk|tk}|)h,

3. |E{xxtk|tk
(tk+1|tk+1)− xx̆tk|tk

(tk+1|tk+1)}| ≤ |E{xtk|tk − x̆tk|tk}|(1 +Kh) +Khp,

where tk+1 − tk = h = 1/s, t0 ≤ t ≤ T − h, p ≥ 1, and h ≤ 1 and K is uniformly bounded

on the parameter space Θ and does not depend on YT = {yt0 , . . . ,yT}. Then, for any tk

between t0 and T − h, the following inequality holds:

|E{xtk|tk − x̆tk|tk}| ≤ K(1 + |E{x0|0}|)hp−1.

Before proving Theorem 5, we need the following lemma:

Lemma 2. Under Condition 1 and 2 of Theorem 5, for all positive integer N and all k =

0, . . . , N the following inequality holds:

|E{x̆tk|tk}| ≤ K(1 + |E{x0|0}|).

Proof. Clearly, we have the following equality:

x̆tk+1|tk+1
= x̆tk|tk + {xx̆tk|tk

(tk+1|tk+1)− x̆tk|tk} − {xx̆tk|tk
(tk+1|tk+1)− x̆tk+1|tk+1

}

= x̆tk|tk + {xx̆tk|tk
(tk+1|tk+1)− x̆tk|tk}

− {xx̆tk|tk
(tk+1|tk+1)− x̆x̆tk|tk

(tk+1|tk+1)}.

Using Condition 1 and 2 of Theorem 5, we have

|E{x̆tk+1|tk+1
}| ≤ |E{x̆tk|tk}|+ |E{xx̆tk|tk

(tk+1|tk+1)− x̆tk|tk}|

+ |E{xx̆tk|tk
(tk+1|tk+1)− x̆x̆tk|tk

(tk+1|tk+1)}|

≤ |E{x̆tk|tk}|+K(1 + |E{x̆tk|tk}|)h+K(1 + |E{x̆tk|tk}|)h
p

≤ (1 +Kh)|E{x̆tk|tk}|+Kh,

where the last inequality holds because p ≥ 1 and h ≤ 1. Applying Lemma 1, we obtain the

desired result.
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Proof of Theorem 5. First of all, we have the following equality:

xtk+1|tk+1
− x̆tk+1|tk+1

= xxtk|tk
(tk+1|tk+1)− xx̆tk|tk

(tk+1|tk+1)

+ xx̆tk|tk
(tk+1|tk+1)− x̆x̆tk|tk

(tk+1|tk+1).

Using Condition 1 and 3 of Theorem 5, we obtain

|E{xtk+1|tk+1
− x̆tk+1|tk+1

}| ≤ |E{xxtk|tk
(tk+1|tk+1)− xx̆tk|tk

(tk+1|tk+1)}|

+ |E{xx̆tk|tk
(tk+1|tk+1)− x̆x̆tk|tk

(tk+1|tk+1)}|

≤ |E{xtk|tk − x̆tk|tk}|(1 +Kh) +K(1 + |E{x̆tk|tk}|)h
p

≤ |E{xtk|tk − x̆tk|tk}|(1 +Kh) +K(1 + |E{x0|0}|)hp,

where the last inequality follows from Lemma 2. Using Lemma 1 and the fact that E{x0|0−

x̆0|0} = 0, we have

|E{xtk|tk − x̆tk|tk}| ≤ K(1 + |E{x0|0}|)hp−1.

Theorem 5 indicates that in the case that p > 1 with decreasing h, the average deviation

between the xtk|tk and its UKF approximation approaches 0 at the rate of hp−1. Next, we

extend Theorem 5.

Theorem 6. Assume the conditions of Theorem 5 hold and that the followings hold

1. |E{yxtk|tk
(tk+1|tk)−yx̆tk|tk

(tk+1|tk)}| ≤ K|E{xxtk|tk
(tk+1|tk) - xx̆tk|tk

(tk+1|tk)}|+Khp−1,

2. |E{xxtk|tk
(tk+1|tk)− xx̆tk|tk

(tk+1|tk)}| ≤ K(|E{xtk|tk − x̆tk|tk}|) +Khp−1,

3. |E{yx̆tk|tk
(tk+1|tk)−y̆x̆tk|tk

(tk+1|tk)}| ≤ K|E{xx̆tk|tk
(tk+1|tk) - x̆x̆tk|tk

(tk+1|tk)}|+Khp−1,

4. |E{xx̆tk|tk
(tk+1|tk)− x̆x̆tk|tk

(tk+1|tk)}| ≤ K(1 + |E{x̆tk|tk}|)hp−1,

where K satisfies the condition required by Theorem 5. Then, for any tk between t0 and

T − h, we have

|E{ytk+1|tk − y̆tk+1|tk}| ≤ K(1 + |E(x0|0)|)hp−1.
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Proof.

|E{ytk+1|tk − y̆tk+1|tk}| ≤ |E{yxtk|tk
(tk+1|tk)− yx̆tk|tk

(tk+1|tk)}|

+ |E{yx̆tk|tk
(tk+1|tk)− y̆x̆tk|tk

(tk+1|tk)}|

≤ K|E{xxtk|tk
(tk+1|tk)− xx̆tk|tk

(tk+1|tk)}|

+K|E{xx̆tk|tk
(tk+1|tk)− x̆x̆tk|tk

(tk+1|tk)}|+Khp−1

(by Condition 1 and 3)

≤ K(|E{xtk|tk − x̆tk|tk}|) +K(1 + |E{x̆tk|tk}|)h
p−1 +Khp−1

(by Condition 2 and 4)

≤ K(1 + |E(x0|0)|)hp−1

(by Lemma 2 and Theorem 5).

Since |E{y(tk+1|tk)− y̆(tk+1|tk)}| = O(hp−1), we need hp−1 < n−1, that is, h < n−1/(p−1)

to obtain consistency and asymptotical normality of our approximate CLS estimator via the

UKF. In Section 6, we will outline an argument suggesting that the UKF can achieve an

error rate up to p = 3 for suitably discretized differential equation models. In contrast, the

EKF can only achieve an error rate up to p = 2 because the EKF uses only the first order

term of the Taylor expansion. Thus, the UKF is more efficient than the EKF.

6. LARGE-SAMPLE PROPERTIES OF THE UKF-CLS ESTIMATOR

Often the state process is driven by some ODE or SDE. For ODEs, the state-space dynamics

can be discretized via the Euler method or the fourth-order Runge-Kutta method (RK4),

whereas for SDEs, the Euler method, the Milstein method, or the Runge-Kutta method may

be employed for discretization, see Boyce and DiPrima (2004) and Milstein and Tretyakov

(2004). The global truncation error rates of the Euler method and the RK4 for ODEs are

O(h) and O(h4), respectively. On the other hand, the strong orders of accuracy of the Euler

method and the Milstein method for SDEs are 1/2 and 1, respectively, where a strong order
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p for a discretized process {X̂tk} to a process {Xt} with time step tk+1 − tk ≡ h is defined

as follows:

E|X̂tk −Xtk | = O(hp).

The Runge-Kutta methods for SDEs have various versions, of which strong orders can be

greater than or equal to 3/2. (We shall assume that the discretization error is of higher order

than the error due to the use of the UKF scheme. This may place a restriction on which

discretization method is permissible. For simplicity, we shall not pursue this issue.) They

have the form as follows:

x̀tk+1
= x̀tk + hvtk(x̀tk) + ηtk , ηtk ∼ (0, hQtk),

where x̀tk is the approximate solution at time tk and tk+1 − tk = h. Note that the Euler

method and the fourth-order Runge-Kutta method for an ODE do not have the error term,

i.e., Qtk = 0. Henceforth, we consider the following discretized state-space model:

ytk = utk(xtk) + εtk , εtk ∼ (0,Htk),

xtk+1
= xtk + hvtk(xtk) + ηtk , ηtk ∼ (0, hQtk),

x0 ∼ (E(x0),Q0).

(5)

Suppose x̆tk|tk ∼ N(x̂tk|tk , hP
∗
tk|tk). Let v̆tk(x̆tk|tk) be the normal approximation via the UKF

corresponding to vtk(x̆tk|tk). Then,

|E{xx̆tk|tk
(tk+1|tk)− x̆x̆tk|tk

(tk+1|tk)}| = |E{x̆tk|tk + hvtk(x̆tk|tk)}

− E{x̆tk|tk + hv̆tk(x̆tk|tk)}|

= h|E{vtk(x̆tk|tk)− v̆tk(x̆tk|tk)}|

= h3dk,

for some vector dk by Theorem 3.

Here, we consider two scenarios: (i) Qtk 6= 0, 0 ≡ t0 < tk < T , for SDEs; (ii) Qtk = 0,

0 ≡ t0 < tk < T , for ODEs. For each scenario, we assume that the (i, j)th entry of Q0,

denoted by Q0,ij, satisfies the condition that |Q0,ij| ≤ bK ≤ hK for some b ≥ 0 and K ≥ 0,

18



for all i and j. We show that for all k, the covariance matrix of x̆tk|tk can be expressed as

hP∗tk|tk for some P∗tk|tk .

First of all, we show that the UT variance estimator of y = x+hv(x) with x ∼ (E(x), hP)

can be written as hP∗ for some P∗. The sigma points are x̂(0) = E(x), x̂(i) = E(x) +

(
√

(c+ λ)hP)Ti , x̂
(i+c) = E(x) − (

√
(c+ λ)hP)Ti , for i = 1, . . . , c. Thus, the UT mean

estimator ŷ = E(x) + h
∑2c

i=0W
(i)v(x̂(i)), which can be written as E(x) + hA for some

A. Hence ŷ(0) − ŷ = hv{E(x)} − hA, ŷ(i) − ŷ = (
√

(c+ λ)hP)Ti + hv(x̂(i)) − hA, and

ŷ(i+c) − ŷ = −(
√

(c+ λ)hP)Ti + hv(x̂(i+c)) − hA, i = 1, . . . , c. This implies that P̂y = hP∗

for some P∗.

Now we consider (i). Since |Q0,ij| ≤ bK ≤ hK for some b ≥ 0 and K ≥ 0, the variance of

x0 can be expressed by hQ∗0 for some Q∗0. Thus, the variance of xt1|t0 , P̂x,t1|t0 is hP∗t1|t0 for

some P∗t1|t0 from the previous argument. If there is no observation at time t1, we can show

P̂x,t2|t0 = hP∗x,t2|t0 with proof similar to that of equation (14) in the Appendix of Ahn and

Chan (2011). Note that P̂x,t2|t0 = P̂x,t2|t2 in this case. In the presence of an observation at

time t1, it can be similarly shown that P̂y,t1|t0 = hR∗y,t1|t0 + Ht1 for some R∗y,t1|t0 . Similarly,

we obtain P̂xy,t1|t0 = hS∗xy,t1|t0 for some S∗xy,t1|t0 . Then, we have

P̂x,t1|t1 = P̂x,t1|t0 − P̂xy,t1|t0P̂
−1
y,t1|t0P̂

T
xy,t1|t0

= hQt1 − h2S∗xy,t1|t0P̂
−1
y,t1|t0(S∗xy,t1|t0)T

≡ hP̂∗x,t1|t1 .

(6)

By the same argument, P̂x,t2|t1 = hP∗x,t2|t1 for some hP∗x,t2|t1 and P̂x,t2|t2 = hP̂∗x,t2|t2 for some

P̂∗x,t2|t2 . By mathematical induction, P̂x,tk|tk = hP̂∗x,tk|tk for all k. Thus, for the case of fixed

initial state vector, we can obtain an error rate with p = 3 for the UKF. Further, if dk and

P̂∗x,tk|tk are uniformly bounded over the parameter space and the initial distribution, i.e., the

distribution of x0, and if the conditions of Theorem 6 are satisfied, the UKF can achieve an

error rate with p = 3 or O(h2).

For (ii), using similar arguments as in case (i), P̂x,t2|t1 = hP∗t2|t1 for some P∗t2|t1 . By the

same argument as in (i), we can show that P̂x,tk|tk = hP̂∗x,tk|tk for all k. Thus, if dk and
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P̂∗x,tk|tk are uniformly bounded over the parameter space, and if the conditions of Theorem

6 are satisfied, the UKF can achieve an error rate with p = 3 or O(h2). Thus, for an ODE,

the entries of the covariance matrix of the initial state vector must be sufficiently small for

the UKF to work.

If h < n−1/(p−1), the approximate CLS estimator via the UKF enjoys the same consistency

and asymptotic normality result of the exact CLS estimators. By similar argument, we can

show that the EKF can achieve an error rate with p = 2 because E(y)− ŷL = O(h) as stated

in Theorem 3. We formalize the preceding discussion by the following theorem:

Theorem 7. Consider the state-space model (5).

1. Assume that Qtk 6= 0 for all tk 6= 0. If the dk and P̂∗x,tk|tk are uniformly bounded,

over the parameter space and for any initial state distribution, and if the conditions of

Theorem 6 are satisfied, the UKF can achieve an error rate with p = 3 or O(h2) and

the EKF can achieve an error rate with p = 2 or O(h).

2. Assume that Qtk = 0 for all tk 6= 0. If the dk and P̂∗x,tk|tk are uniformly bounded over

the parameter space, and if the conditions of Theorem 6 are satisfied, the UKF can

achieve an error rate with p = 3 or O(h2) and the EKF can achieve an error rate with

p = 2 or O(h).

3. Moreover, if h < n−1/(p−1) and condition (ii) of Theorem 1 holds, the approximate CLS

estimators via the UKF and EKF enjoy the same consistency and asymptotic normality

result of the exact CLS estimators.

We remark that standard errors of the approximate CLS estimates can be computed by

making use of the asymptotic normality result:

√
n(θ̂ − θ0)→d N(0,V−1WV−1),

where V and W can be estimated with the partial derivatives approximated by finite differ-

ences, and confidence intervals of the parameters can then be constructed.
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7. SIMULATION STUDY

In this section, we report results from three simulation studies, with the first model satisfying

the conditions of Theorem 1, 5, and 6. The other two simulation studies are based on an

ODE system and a SDE system.

In Appendix, under assumptions (a)–(d) listed below, we verify the validity of the con-

ditions stated in Theorems 5 and 6 for the following model:

ytk = Ztkxtk + εtk ,

xtk+1
= xtk + hg(xtk) + ηtk ,

where εtk ∼ (0,Htk) and ηtk ∼ (0, hQtk). It is assumed that Ztk is invertible for all k. Here,

ηtk may be a zero vector. Moreover, we assume

(a) |εtk | ≤ Kbp with 0 < b ≤ h ≤ 1 and its covariance matrix Htk = cH
′
tk

where 0 < c ≤

Kbp.

(b) |ytk | is bounded for all k.

(c) g and (∂g(x)/∂xT )ij are bounded.

(d) |(∂2g(x)/∂xT∂x)ij| ≤ Khp−1 for all i, j.

7.1 Example 1

Consider the following model:

yt = xt + εt,

dxt
dt

= θx2
t − xt + cos(0.5t),

where θ = 0.1 and εt ∼ Unif(−0.1, 0.1). The initial value is assumed to be known as

x0 = 0. To discretize the observation equation, we employed the RK4. For computing the

“true” states, the RK4 with h = 1/30 was employed. Observations were sampled for every

30th state. The yt’s were generated by adding to the xt’s random errors distributed from
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Figure 1: The upper graph shows true states (red dashed line) and the data (black solid

line) simulated from the model with ε ∼ Unif(−0.1, 0.1). The lower graph shows another

simulated realization from the model with ε ∼ N(0, 0.1).

22



Unif(−0.1, 0.1). Let f(t, xt) = θx2
t − xt + cos(0.5t). The discretized state-space model is

given by

ytk = xtk + εtk ,

xtk+1
= xtk +

h

6
(k1,tk + 2k2,tk + 2k3,tk + k4,tk),

where

k1,tk = f(tk, xtk),

k2,tk = f(tk +
h

2
, xtk +

h

2
k1,tk),

k3,tk = f(tk +
h

2
, xtk +

h

2
k2,tk),

k4,tk = f(tk + h, xtk + hk3,tk).

Let g(xtk) = (k1,tk +2k2,tk +2k3,tk +k4,tk)/6. Conditions (a)–(b) stated in the beginning of this

section can be shown to hold. We shall consider various step size h with the smallest h being

1/10 and K = 100. For simplicity, we estimate θ only. We use the ‘optimize’ function in R

for minimizing the CLS objective function, with θ searched over the interval (−10, 10). Since

we did not observe an initial value problems on optimization, we set it to 1. We also have also

repeated the experiment but with infinite-support noise, specifically, εtk ∼ N(0, 0.1). Figure

7.1 shows the time plots of two simulated realizations. The experiment was replicated 1000

times. The step-size h was chosen based on Condition 3 of Theorem 7: h < n−1/2. Table 1

shows the simulation results. As we can see in Table 1, as h decreases with fixed n = 24,

the estimates become less biased although the standard deviation increases slightly. And as

n increases while h is decreasing, the estimates are less biased and the standard deviation

decreases. In addition, the estimates and standard deviations from the UKF are slightly

less biased and less than those of the EKF, respectively. The empirical coverage rates of the

95% confidence intervals, computed by the method discussed below Theorem 7, are generally

close to 0.95, but slightly less than 0.95.

7.2 Example 2

The second simulation model is a variation of the SIR model. A typical SIR model assumes

constant population size over time, see Diekmann and Heesterbeek (2000). We consider a
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Table 1: Simulation results for Example 1. The numbers in a row with row heading “M” are

sample means, those with row heading “SD” are sample standard deviations and those with

row heading “ECR” are the empirical coverage rate of the nominal 95% confidence intervals.

Unif(−0.1, 0.1) N(0, 0.1)

UKF EKF UKF EKF

n = 24, h = 1 M 0.09738 0.09724 0.09778 0.09758

SD 0.02752 0.02760 0.04837 0.04840

ECR 0.9419 0.9429 0.9410 0.9410

n = 24, h = 1/2 M 0.09874 0.09870 0.09904 0.09895

SD 0.02780 0.02787 0.04885 0.04888

ECR 0.9390 0.9410 0.9390 0.9400

n = 24, h = 1/3 M 0.09880 0.09877 0.09909 0.09901

SD 0.02780 0.02788 0.04887 0.04889

ECR 0.9390 0.9410 0.9390 0.9400

n = 24, h = 1/5 M 0.09881 0.09878 0.09910 0.09902

SD 0.02781 0.02788 0.04887 0.04889

ECR 0.9390 0.9410 0.9390 0.9400

n = 48, h = 1/7 M 0.10015 0.10013 0.09978 0.09975

SD 0.01816 0.01817 0.03158 0.03159

ECR 0.9495 0.9495 0.9343 0.9343

n = 72, h = 1/10 M 0.10006 0.10006 0.09961 0.09960

SD 0.01462 0.01463 0.02514 0.02515

ECR 0.9457 0.9467 0.9371 0.9381
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Figure 2: A simulated series: Red dashed line in the upper diagram shows the true infection

rate. The solid line plots the observed infection rates based on the simulated trapping

samples. The middle diagram plots the realized trapping size. The bottom diagram plots

true population size.
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more general model which assumes that the population size changes overtime. Let S, I, R,

be the sizes of susceptibles, infectives, recovered individuals, and N the total population

size, respectively. Also let α, µ, γ, and b be the force of infection, death rate, recovery rate,

and birth rate. The true (latent) state process satisfies the following system of differential

equations:
dS

dt
= −αSI

N
+ bN − µS, dI

dt
= α

SI

N
− γI − µI,

dR

dt
= γI − µR, dN

dt
= −µN + bN,

(7)

where b = bt = p sin(π
6
t) + q cos(π

6
t) + r. Note that one of the equations in (7) is redundant

because S+I+R = N . From Equation (7), we can obtain the following differential equations:

d

dt

( S
N

)
= −α S

N

I

N
+
(

1− S

N

)
b,

d

dt

( I
N

)
= α

S

N

I

N
− (b+ γ)

I

N
,

(8)

where d/dt(R/N) was omitted because it is redundant. Equation (8) is preferred to Equation

(7) for estimation because it requires one less parameter as µ is dropped and its state space

is the simplex so that the nonlinearity in Equation (8) may be less severe than Equation (7).

From the full model (7), we simulated the population size Nt and then generated the sample

size mt from the binomial distribution Bin(Nt,a) where a is the capture rate. Observations

are taken at time t = 1, 2, . . . , n; at time t, yt is drawn from the binomial distribution

Bin(mt, It/Nt), with yt/mt being the observed sample proportion of infectives. The y’s

are conditionally independent given mt, It/Nt, t = 1, 2, . . . , n. The true parameter vector

(α, µ, γ, p, q, r) = (1, 0.15, 0.15, 0.06,−0.1, 0.15), with the initial proportion of susceptibles

being s0 = 0.25 and that of infectives equal to i0 = 0.55. The fourth-order Runge-Kutta

method was employed to generate the underlying continuous-time process. The discretization

step size is set to h = 1/30 corresponding to 1 day, whereas the proportions of infectives

were measured as the sample proportion of infective subjects, once per month.

Each simulated series is 72 months long, hence there are 72×30 = 2160 state vectors.

Figure 2 shows a simulated series of observations. For statistical analysis, the UKF-CLS
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method was applied to fit the following state-space model:

ytk
mt

=
Itk
Ntk

+ εtk , εtk ∼ N(0,
ytk(1− ytk)

mtk

),

xtk+1
= xtk +

h

6
(k1,tk + 2k2,tk + 2k3,tk + k4,tk),

where tk+k = tk +h for some h > 0, and xtk+1
is the fourth-order Runge-Kutta discretization

of the latent state process {x(t) = (St/Nt, It/Nt)
T} driven by the differential equation

d

dt

( S
N

)
= −α S

N

I

N
+
(

1− S

N

)
b,

d

dt

( I
N

)
= α

S

N

I

N
− (b+ γ)

I

N
,

where

b = bt = p sin(
π

6
t) + q cos(

π

6
t) + r.

The variance of εtk was obtained from the variance of the binomial distribution. Optimization

of the approximate CLS was done in R with the “optim” function. In order to apply the

UKF, we need to specify the distribution of the initial state vector which is taken to be some

distribution with mean vector (s0, i0) and covariance matrix given by

1

N0

s0(1− s0) −s0i0

−s0i0 i0(1− i0)

 ,

where N0 is the initial population size; this specification is motivated by the fact that

(S0, I0, R0) has a multinomial distribution Multinom(N0, (s0, i0, r0)). In practice, s0, i0 and

N0 are unknown, and they could be estimated by the UKF-CLS, by augmenting them into

the parameter vector. The initial population size N0 is fixed at 150 (the true N0 is 250)

in the simulation study because empirically N0 shows little impact on the other estimated

parameter values.

For the UKF computations, we set λ of Section 3 to zero for simplicity. The starting

values for (α, µ, γ, p, q, r, s0, i0) in optimization are generated from the uniform distributions:

Unif(0.6, 1.4), Unif(0.05, 0.25), Unif(0, 0.12), Unif(−0.2, 0), Unif(0.05, 0.25), Unif(0.10, 0.40),

and Unif(0.40, 0.70), respectively. The trapping proportion a is set to 0.2, i.e., about 20%
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Table 2: Simulation results for estimation equation (8). The numbers in a row with row

heading “M” are sample means and those with row heading “SD” are sample standard

deviations

α γ p q r i0 s0

h&n (1) (0.15) (0.06) (-0.1) (0.15) (0.25) (0.55)

h = 1 M 1.044 0.143 0.058 -0.085 0.168 0.263 0.564

n = 24 SD 0.415 0.039 0.056 0.049 0.066 0.134 0.116

h = 1/5 M 1.046 0.142 0.057 -0.084 0.167 0.266 0.561

n = 24 SD 0.414 0.038 0.056 0.048 0.064 0.134 0.110

h = 1 M 1.025 0.143 0.060 -0.087 0.166 0.261 0.560

n = 48 SD 0.343 0.035 0.047 0.038 0.056 0.119 0.100

h = 1 M 1.008 0.142 0.061 -0.087 0.165 0.257 0.561

n = 72 SD 0.320 0.034 0.044 0.035 0.055 0.105 0.093

of the subjects are trapped at the end of each month in order to compute the proportion

of infectives. Since we found that the RK4 with h = 1, 1/2, 1/3, 1/5, 1/15, 1/30 produces

almost identical state vector values and the UKF also shows very similar estimates, we ran

n = 24 with h = 1, 1/5, n = 48 with h = 1, and n = 72 with h = 1. Each experiment

was replicated 1000 times. Table 2 summarizes the simulation results. The numbers in

parenthesis in the first row of the table are the true parameter values. The results of n = 24

with h = 1 and n = 24 with h = 1/5 are very similar. On average, all parameter estimators

are close to the true parameters. Moreover, as n increases, the estimates become slightly

closer to the true parameters, on average. Furthermore, the sample standard deviations

decrease with increasing sample size.
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Figure 3: A simulated series: The first two upper diagrams plot the sample paths of st and

it. In the bottom diagram, the solid line plots the observed infection rates based on the

simulated trapping samples. The red dashed line shows the true infection rate.

29



7.3 Example 3

In this section, we consider an example of the SDE, which is a stochastic version of (8):dst
dit

 =

−αstit + (1− st)bt

αstit − (bt + γ)it

 dt+ kBt

dw1(t)

dw2(t)

 ,

where st and it represent the proportion of susceptibles and infectives, and wi(t) are two

independent standard Brownian motion for i = 1, 2 with

BtB
′

t =

st(1− st) −stit

−stit it(1− it)

 .

The state equation may be discretized by several methods, e.g. the Euler’s method, Milstein’s

method, and Runge-Kutta method, see Milstein and Tretyakov (2004). We employ the

Euler’s method. The discretized state equation isstk+1

itk+1

 =

stk
itk

+

−αstkitk + (1− stk)btk

αstkitk − (btk + γ)stk

h+ kBtk

∆w1(tk)

∆w2(tk)

 ,

where ∆wi(tk) = wi(tk+1)−wi(tk) for i = 1, 2. Since wi(tk) indicates the standard Brownian

motion, the state-space model becomes

yt = it + εt, εt ∼ N
(

0,
yt(1− yt)

mt

)
,stk+1

itk+1

 =

stk
itk

+

−αstkitk + (1− stk)btk

αstkitk − (btk + γ)stk

h+ kBtkηtk ,

where

btk = p sin(
π

6
tk) + q cos(

π

6
tk) + r,

ηtk ∼ N

0,

h 0

0 h

 ,

BtkB
′

tk
=

stk(1− stk) −stkitk
−stkitk itk(1− itk)

 .

The distribution of the initial state vector is

N

s0

i0

 , k2

s0(1− s0) −s0i0

−s0i0 i0(1− i0)

 .
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Table 3: Simulation results for the SDE model. The numbers in a row with row heading

“M” are sample means and those with row heading “SD” are sample standard deviations

α γ p q r i0 s0 k

h&n (1) (0.15) (0.06) (-0.1) (0.15) (0.25) (0.55) (0.01)

h = 1 M 1.052 0.142 0.054 -0.050 0.162 0.301 0.531 0.011

n = 24 SD 0.363 0.034 0.038 0.034 0.062 0.137 0.115 0.008

h = 1/2 M 1.066 0.146 0.056 -0.070 0.169 0.297 0.543 0.011

n = 24 SD 0.404 0.037 0.046 0.042 0.064 0.144 0.120 0.007

h = 1/3 M 1.075 0.147 0.057 -0.076 0.172 0.294 0.546 0.011

n = 24 SD 0.420 0.038 0.051 0.045 0.066 0.147 0.120 0.008

h = 1/5 M 1.069 0.148 0.056 -0.082 0.173 0.290 0.549 0.011

n = 24 SD 0.388 0.038 0.054 0.046 0.066 0.142 0.119 0.008

n = 48 M 1.054 0.149 0.057 -0.087 0.170 0.275 0.557 0.011

h = 1/7 SD 0.338 0.036 0.045 0.037 0.057 0.128 0.106 0.008

n = 72 M 1.046 0.149 0.059 -0.087 0.170 0.263 0.560 0.012

h = 1/10 SD 0.325 0.035 0.043 0.034 0.054 0.116 0.094 0.008

The experiment was replicated 1000 times. Since the Euler method is less accurate than

the Milstein’s method and the Runge-Kutta method, the sample path of the true states were

generated using the Euler method with h = 1/60, with observations presumed to be measured

every 60th true state. We fixed the sample size mt = 50 and generated the sample infection

proportions from Bin(50, itk). Figure 3 shows the time plots of a realization. We used the

same starting values as described in Example 2 for optimization. Table 3 summarizes the

simulation results. The results of n = 24 with h = 1, 1/2, 1/3, 1/5 show that in general as

h decreases, the estimates become closer to the true parameters, on average. Further, as n

increases and h decreases, the estimates become slightly closer to the true parameters, on
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Figure 4: Upper diagram plots the observed and fitted values. Lower diagram plots the

estimated birth rate function.

average, with smaller sample standard deviations.

8. REAL EXAMPLE: PREVALENCE OF BARTONELLA INFECTION IN A WILD

POPULATION OF COTTON RATS

We analyze a dataset from a monitoring study, conducted by CDC, on the prevalence of

bartonella infection in a wild cotton rat population over a period of 17 months, from March,

1996 to July, 1997 (Kosoy, Mandel, Green, Marston, Jones and Childs 2004; Chan and Kosoy

Table 4: Estimates and standard errors of the fitted SIR model.

α γ p q r s0 i0

θ̂ 2.127 0.109 0.534 0.057 0.645 0.318 0.552

s.e. 0.485 0.018 0.149 0.048 0.137 0.113 0.103
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2010). But trapping was not done in December, 1996, resulting in a lone missing data case.

So there were 16 observed bartonella (monthly) infection rates, with all bartonella variants

included. In June and July in 1996, four cotton rats gave birth in their traps. To avoid

issues related to vertical transmission of bartonella infection from parent subjects to their

children, we excluded 10 rats in June, 1996 (Rat #: 361, . . . , 366 and 11, . . . , 14) and 9 rats in

July, 1996 (Rat #: 1041, . . . , 1045 and 1091, . . . , 1094). We shall analyze the data based on

the SIR framework specified by Equation (8). As explained earlier, for estimation purpose,

Equation (8) is preferred so that all results reported below is based on Equation (8) fitted

by the proposed UKF-CLS method. We fixed N0 = 150 and h = 1. In the upper diagram of

Figure 4, the solid black line plots the sample infection rates and the red dotted line plots the

predicted values based on the past data, that is, Ê(it|y1, · · · , yt−1,m1, . . . ,mt−1), computed

from the fitted SIR model. The blue dotted line indicates the nominal 95% prediction interval

assuming the predictors are normally distributed with the prediction variance obtained from

the UKF. All observations are inside the 95% prediction intervals. The estimated birth rate

curve (lower diagram of Figure 4) shows that as the birth rate increases, the infection rate

decreases and vice versa, which matches general epidemiological considerations. Table 4

shows the estimated parameter values and their standard errors, based on the asymptotic

distribution results for the UKF-CLS estimator, see the discussion below Theorem 7. The

estimated values are α̂ = 2.127, γ̂ = 0.109, p̂ = 0.534, q̂ = 0.057, r̂ = 0.645, ŝ0 = 0.318, and

î0 = 0.552. Note that (ŝ0, î0) is the estimated value for one month before March, 1996, that

is, the estimated value for February, 1996. For interpretation, the mean monthly recovery

rate of infectives is 0.109 (γ̂), i.e., 10.9% of infectives are recovered a month after infection

on average. The estimate α̂ = 2.127 is the product of the transmission probability and

the number of contacts. In other words, the average number of new infections per infected

subject per month is 2.127. The birth rate b indicates the birth rate per capita, which is

estimated to attain the maximum in May and the mimimum in November.

We now assess the goodness of fit of the fitted SIR model, by checking whether or not

the standardized residuals are approximately independent and identically distributed. The

33



Figure 5: Model diagnostics of the SIR model fitted to the cotton rat data. Upper figure

plots the residual autocorrelation function which suggests that the standardized residuals

are not serially correlated. This is confirmed by the plot of the p-values of the Box-Ljung

test for no residual autocorrelations based on cumulative information of the first k lags of

residual autocorrelations, for k = 1, 2, · · · , 15. The horizontal line indicates the 5% level.
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residuals are defined by the observed values minus the predicted values which are generally

the 1-step ahead predictors. The residuals can then be standardized by normalizing them

by the predicted standard deviations. Figure 5 shows the ACF plot and the p-values of the

Ljung-Box plot of standardized residuals which are useful for checking the iid assumption of

the standardized residuals. The ACF plot and the Ljung-Box plot show that the residuals

appear to be white noise, suggesting that the model fits the data well.

9. DISCUSSION

A new approach for implementing the method of conditional least squares via UKF has

been proposed for estimating a continuous-time process with discrete-time data. Simulation

studies confirm that the UKF-CLS method enjoys good empirical performance. In addition,

the new model describes the dynamics of the real data example well.

The UKF has several advantages over the EKF and simulation based methods. First, the

UKF does not need to calculate the Jacobian matrix, which may not be available. Second,

the UKF uses a deterministic scheme to choose the sigma points. This makes the UKF com-

putationally more efficient than simulation based methods. For the case of the discretized

state-space model of a process defined by some differential equation, the 1-step ahead pre-

dictor can be computed by the UKF with an error of O(h2) which is better than the EKF.

Moreover, the faster convergence rate leads to the consistency and asymptotic normality of

the UKF-CLS estimator with sufficiently small step-size h which is less than n−1/(p−1). An

interesting statistical problem is to generalize the proposed approach to Gaussian-likelihood

estimation.
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APPENDIX A. PROOF OF EXAMPLE IN SECTION 7

We give the proof that the example in the beginning of Section 7 satisfies the conditions of

Theorems 5 and 6.

There are two cases: i) We have an observation at time tk+1; ii) We do not have an

observation at time tk+1.

• i) We observe ytk+1
.

– Let’s consider Condition 1 of Theorem 5. Since

ytk = Ztkxtk + εtk ,

we have

E{xx̆tk|tk
(tk+1|tk+1)}

= E{Z−1
tk
yx̆tk|tk

(tk+1|tk+1)} − E{Z−1
tk
εx̆tk|tk

(tk+1|tk+1)}

= Z−1
tk
ytk+1

− Z−1
tk

E{εx̆tk|tk
(tk+1|tk+1)}.

Let Mtk = P̂x,tk+1|tkZ
−1
tk

and Ftk = ZtkP̂x,tk+1|tkZ
−1
tk

+ Htk . By linear projection,

we have

E{x̆x̆tk|tk
(tk+1|tk+1)}

= E{x̆x̆tk|tk
(tk+1|tk)}+ MtkF

−1
tk

(ytk+1
− ZtkE{x̆x̆tk|tk

(tk+1|tk)})

= (I−MtkF
−1
tk
Ztk)E{x̆x̆tk|tk

(tk+1|tk)}+ MtkF
−1
tk
ytk+1

.

Thus,

|E{xx̆tk|tk
(tk+1|tk+1)} − E{x̆x̆tk|tk

(tk+1|tk+1)}|

≤ |(Z−1
tk
−MtkF

−1
tk

)ytk+1
|+ |(I−MtkF

−1
tk
Ztk)E{x̆x̆tk|tk

(tk+1|tk)}|

+ |Z−1
tk

E{εx̆tk|tk
(tk+1|tk+1)}|.
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Consider the first term first.

Z−1
tk
−MtkF

−1
tk

= Z−1
tk
− P̂x,tk+1|tkZ

−1
tk

(ZtkP̂x,tk+1|tkZ
−1
tk

+ Htk)−1

= Z−1
tk

[
I− ZtkP̂x,tk+1|tkZ

−1
tk

(ZtkP̂x,tk+1|tkZ
−1
tk

+ Htk)−1
]

= Z−1
tk

[
(ZtkP̂x,tk+1|tkZ

−1
tk

+ Htk)− ZtkP̂x,tk+1|tkZ
−1
tk

]
× (ZtkP̂x,tk+1|tkZ

−1
tk

+ Htk)−1

= Z−1
tk
Htk(ZtkP̂x,tk+1|tkZ

−1
tk

+ Htk)−1

= cZ−1
tk
H∗tk(ZtkP̂x,tk+1|tkZ

−1
tk

+ cH∗tk)−1.

Consider Utk ≡ Z−1
tk
H∗tk

(
ZtkP̂x,tk+1|tkZ

−1
tk

+ cH∗tk

)−1

ytk+1
. Recall Ztk and H∗tk

are fixed. And P̂x,tk+1|tk is a combination of linear functions of sigma points

and the values of g(x∗) where x∗’s are sigma points. Further, sigma points are

the continuous functions of h. Thus, the Euclidean norm of Utk is a continuous

function of h. Since h is bounded with 0 < b ≤ h ≤ 1 and |ytk+1
| is also bounded,

so is |Utk |. Therefore, c|Utk | ≤ Kbp. Similarly, we have

(I−MtkF
−1
tk
Ztk)

= Z−1
tk

[
I− ZtkP̂x,tk+1|tkZ

−1
tk

(
ZtkP̂x,tk+1|tkZ

−1
tk

+ Htk

)−1]
Ztk

= Z−1
tk

[(
ZtkP̂x,tk+1|tkZ

−1
tk

+ Htk

)
− ZtkP̂x,tk+1|tkZ

−1
tk

]
×
(
ZtkP̂x,tk+1|tkZ

−1
tk

+ Htk

)−1

Ztk

= cZ−1
tk
H∗tk

(
ZtkP̂x,tk+1|tkZ

−1
tk

+ cH∗tk

)−1

Ztk

⇒ |(I−MtkF
−1
tk
Ztk)E{x̆x̆tk|tk

(tk+1|tk)}| ≤ Kbp.

Since |εtk | ≤ Kbp and Ztk is fixed, |Z−1
tk

E{εx̆tk|tk
(tk+1|tk+1)}| ≤ Kbp. Thus, we

have

|E{xx̆tk|tk
(tk+1|tk+1)} − E{x̆x̆tk|tk

(tk+1|tk+1)}| ≤ Kbp ≤ Khp,

for 0 < b ≤ h ≤ 1. Therefore, Condition 2 is satisfied.
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– Let’s consider Condition 2 of Theorem 5. We have

|E{xx̆tk|tk
(tk+1|tk+1)} − E{x̆tk|tk}|

= |E{xx̆tk|tk
(tk+1|tk+1)} − E{x̆x̆tk|tk

(tk+1|tk+1)}

+ E{x̆x̆tk|tk
(tk+1|tk+1)} − E{x̆tk|tk}}|

≤ |E{xx̆tk|tk
(tk+1|tk+1)} − E{x̆x̆tk|tk

(tk+1|tk+1)}|

+ |E{x̆x̆tk|tk
(tk+1|tk+1)} − E{x̆tk|tk}}|

≤ K(1 + |E{x̆tk|tk}|)h
p + |E{x̆x̆tk|tk

(tk+1|tk+1)} − E{x̆tk|tk}}|,

where the last inequality is from Condition 1. By linear projection, we have

|E{x̆x̆tk|tk
(tk+1|tk+1)} − E{x̆tk|tk}}|

= |E{x̆x̆tk|tk
(tk+1|tk)}+ MtkF

−1
tk

(ytk+1
− ZtkE{x̆x̆tk|tk

(tk+1|tk)})

− E{x̆tk|tk}}|.

Let’s consider MtkF
−1
tk

(ytk+1
− ZtkE{x̆x̆tk|tk

(tk+1|tk)}) first. Note that

MtkF
−1
tk

= P̂x,tk+1|tkZ
−1
tk

(ZtkP̂x,tk+1|tkZ
−1
tk

+ Htk)−1.

Assuming a fixed initial value, P̂x,tk+1|tk = hP∗tk+1|tk for some covariance matrix

P∗tk+1|tk . Also P∗tk+1|tk can be expressed as the sum and product of the values of

bounded functions of the form g(·) from the UT. Thus, all entries of P∗tk+1|tk are

also bounded for all k and so are (ZtkP̂x,tk+1|tkZ
−1
tk

+Htk)−1’s. Since |g| is bounded

and |ytk+1
| are bounded, |(ytk+1

− E{x̆x̆tk|tk
(tk+1|tk)})| is bounded. Thus, we get

|E{x̆x̆tk|tk
(tk+1|tk+1)} − E{x̆tk|tk}|

≤ |E{x̆x̆tk|tk
(tk+1|tk)} − E{x̆tk|tk}|+Kh

≤ |E{x̆x̆tk|tk
(tk|tk)}+ hE{ğ(x̆x̆tk|tk

(tk|tk))} − E{x̆tk|tk}|+Kh

= |E{ğ(x̆tk|tk)}|h+Kh

≤ Kh,
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where E{ğ(x̆tk|tk)} is the mean calculated from the UT. Therefore,

|E{x̆x̆tk|tk
(tk+1|tk+1)} − E{x̆t|t}}| ≤ K(1 + |E{x̆tk|tk}|)h

p +Kh

≤ K(1 + |E{x̆tk|tk}|)h.

Hence, Condition 2 is satisfied.

– Let’s consider Condition 3 of Theorem 5. For b ≤ h ≤ 1, we have

|E{xxtk|tk
(tk+1|tk+1)} − E{xx̆tk|tk

(tk+1|tk+1)}|

= |Z−1
tk

[ytk+1
− E{εxtk|tk

(tk+1|tk+1)} − ytk+1
+ E{εx̆tk|tk

(tk+1|tk+1)}]|

≤ Khp.

Therefore, Condition 3 is satisfied.

• ii) We do not observe ytk+1
.

– Let’s consider Condition 1 of Theorem 5. Since we do not have an observation at

time tk+1, the information up to time tk+1 is the same as the information up to

time tk. Thus,

|E{xx̆tk|tk
(tk+1|tk+1)} − E{x̆x̆tk|tk

(tk+1|tk+1)}|

= |E{xx̆tk|tk
(tk+1|tk)} − E{x̆x̆tk|tk

(tk+1|tk)}|.

This is the norm of an one-step prediction error. So by the same argument as in

Section 6, we can obtain

|E{xx̆tk|tk
(tk+1|tk)} − E{x̆x̆tk|tk

(tk+1|tk)}| ≤ Kh3.

Thus, we can obtain p up to 3. Thus, Condition 1 is satisfied.

– Let’s consider Condition 2. By the similar argument as in the proof of Condition

2 in case i),

|E{xx̆tk|tk
(tk+1|tk+1)} − E{x̆tk|tk}|

= |E{xx̆tk|tk
(tk+1|tk)} − E{x̆tk|tk}|

≤ K(1 + |E{x̆tk|tk}|)h.

Thus, Condition 2 is satisfied.
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– Let’s consider Condition 3. We have

|E{xxtk|tk
(tk+1|tk+1)} − E{xx̆tk|tk

(tk+1|tk+1)}|

= |E{xxtk|tk
(tk+1|tk)} − E{xx̆tk|tk

(tk+1|tk)}|

≤ |E{xxtk|tk
(tk+1|tk+1)} − E{xx̆tk|tk

(tk|tk)}|

+ h|E{g(xxtk|tk
(tk|tk))} − E{g(xx̆tk|tk

(tk|tk))}|

= |E{xtk|tk} − E{x̆tk|tk}|+ h|E{g(xtk|tk)− g(x̆tk|tk)}|.

Let xtk|tk = (x1,tk|tk , . . . , xc,tk|tk)T . Upon Taylor expansion,

g(xtk|tk) = g(E{xtk|tk}) +
(

(x1,tk|tk − E{x1,tk|tk})
∂

∂x1

+ · · ·

+ (xc,tk|tk − E{xm,tk|tk})
∂

∂xc

)
g
∣∣∣
E{xtk|tk}

+
1

2!

(
(x1,tk|tk − E{x1,tk|tk})

∂

∂x1

+ · · ·

+ (xm,tk|tk − E{xm,tk|tk})
∂

∂xc

)2

g
∣∣∣
α
,

g(x̆tk|tk) = g(E{xtk|tk}) +
(

(x̆1,tk|tk − E{x1,tk|tk})
∂

∂x1

+ · · ·

+ (x̆c,tk|tk − E{xc,tk|tk})
∂

∂xc

)
g
∣∣∣
E{xtk|tk}

+
1

2!

(
(x̆1,tk|tk − E{x1,tk|tk})

∂

∂x1

+ · · ·

+ (x̆c,tk|tk − E{xc,tk|tk})
∂

∂xc

)2

g
∣∣∣
β
,

where αi is between xi,tk|tk and E{xi,tk|tk} and βj is between x̆j,tk|tk and E{xj,tk|tk}

for 1 ≤ i, j ≤ c. Consider∣∣∣E[((x1,tk|tk − E{x1,tk|tk})
∂

∂x1

+ · · ·+ (xc,tk|tk − E{xc,tk|tk})
∂

∂xc

)2

g
∣∣∣
α

]∣∣∣
≤
∑
i,j

∣∣∣E[(xi,tk|tk − E{xi,tk|tk})(xj,tk|tk − E{xj,tk|tk})
∂2

∂xi∂xj
g
∣∣∣
α

]∣∣∣
Since ytk ’s are bounded for all k, xtk ’s are also bounded because of ytk = Ztkxtk +

εtk where |εtk | ≤ Kbp. Thus, (xi,tk|tk − E{xi,tk|tk}) is bounded for 1 ≤ i ≤ c and
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all k. In addition, |∂2g/∂xi∂xj| ≤ Khp−1. Therefore, we obtain∣∣∣E[((x1,tk|tk − E{x1,tk|tk})
∂

∂x1

+ · · ·

+ (xc,tk|tk − E{xc,tk|tk})
∂

∂xc

)2

g
∣∣∣
α

]∣∣∣ ≤ Khp−1,∣∣∣E[((x̆1,tk|tk − E{x1,tk|tk})
∂

∂x1

+ · · ·

+ (x̆c,tk|tk − E{xc,tk|tk})
∂

∂xc

)2

g
∣∣∣
β

]∣∣∣ ≤ Khp−1.

Then,

|E{g(xtk|tk)} − E{g(x̆tk|tk)}|

=
∣∣∣((E{x1,tk|tk} − E{x̆1,tk|tk})

∂

∂x1

+ · · ·

+ (E{xc,tk|tk} − E{x̆c,tk|tk})
∂

∂xc

)
g
∣∣∣
E{xtk|tk}

+Khp−1

≤ K|E{xtk|tk} − E{x̆tk|tk}|+Khp−1,

where the inequality holds by the Cauchy-Schwarz inequality and the boundedness

of the first derivative of g. Thus, Condition 3 is satisfied.

Next, we show the conditions of Theorem 6 to complete the UKF-CLS example. Since

ytk = Ztkxtk + εtk , we have

E{yxtk|tk
(tk+1|tk)} = ZtkE{xxtk|tk

(tk+1|tk)},

E{yx̆tk|tk
(tk+1|tk)} = ZtkE{xx̆tk|tk

(tk+1|tk)},

E{y̆x̆tk|tk
(tk+1|tk)} = ZtkE{x̆x̆tk|tk

(tk+1|tk)}.

Thus, Condition 1 and 3 of Theorem 6 are satisfied by the Cauchy-Schwarz inequality.

Condition 2 and 4 of Theorem 6 are shown in the proofs of Condition 1 and 3 of Theorem

5, respectively. Therefore, if εtk is bounded and its radius is small, we can have a UKF-CLS

estimator close to the exact CLS estimator.
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